

01101001001110010101
10101101010010111011
10001011101010101011
10110010100101011010
10101001101011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010
10010111011100010111
01010101011101100101
00101011010101010011
00110100100111001010
11010110101001011101
11000101110101010101
11011001010010101101
01010100110011010010
01110010101101011010

 run

Index Services

ODABA
NG

 Page 2 of 26

run Software-Werkstatt GmbH
Weigandufer 45
12059 Berlin

Tel: +49 (30) 609 853 44
e-mail: run@run-software.com
web: www.run-software.com

Berlin, October 2012

 Page 3 of 26

Content

1 Introduction ..4
ODABA

NG
 ..4

Platforms ...4
Interfaces ...4
User Interfaces ..4

2 Index Services ..5
Tools ..5
Word collections ..5
Built index ..6
Multilingual support ...7
Index service application ...7
Index maintenance ..7

3 GUI Index Services ...8
Ini-file ...8
Running GUI Index Services ...9
Predefined settings .. 11
Indexing objects ... 11

4 Console Index Services .. 15
Ini-file .. 15
Maintenance options .. 16
Running console Indexing Services ... 17

5 Index Manager Options... 19
collection .. 19
field1…9 ... 19
Switches ... 20

6 Create application specific Index Services 22
IndexManager class ... 22
Opening IndexManager .. 22
Indexing process .. 22
Keyword search ... 23

 Page 4 of 26

1 Introduction

ODABA
NG

 ODABA
NG

 is an object-oriented database system that al-
lows storing objects and methods as well as causalities.
As an object-oriented database, ODABA

NG
 supports

complex objects (user-defined data types), which are
built on application relevant concepts.

ODABA
NG

 applications are characterised by a high flexi-
bility that is achieved by supporting in addition to object
(concept) hierarchy, multifarious relations between ob-
jects (master and detail relations, relations between in-
dependent objects and others). This way conditions and
behaviour of objects in the real world can be represented
considerably better than in relational systems.

ODABA
NG

 applications cannot only be drawn up as
event-driven applications within the field of the graphical
surface but also at the database level. This is one more
way in which the application design is very close to the
problem.

This makes ODABA
NG

 applications a favourite possibility
to solve highly complex jobs as come up in administra-
tive and knowledge areas.

Platforms ODABA
NG

 supports windows platforms (Win-
dows95/98/Me, Windows NT and Windows 2000) as well
as UNIX platforms (Linux, Solaris).

You can build local applications or client server applica-
tions with a network of servers and clients.

Interfaces ODABA
NG

 supports several technical interfaces:

 C++, COM as application program interface (this
allows e.g. using ODABA

NG
 in VB scripts and

applications)

 ODBC (for data exchange with relational data-
bases)

 XML (as document interface as well as for data
exchange)

User Interfaces ODABA
NG

 provides special COM-Controls that easily al-
low building applications in Visual Basic. On the other
hand ODABA

NG
 provides a special ODABA

NG
 GUI build-

er.

 Page 5 of 26

2 Index Services

 Index Services are used for associating application ob-
ject instances with a key word index. OODABA

NG
 pro-

vides index services in order to generate keyword index-
es for documentation elements (topics, concepts,
themes).

 In addition, Index Services support indexing any type of
application object. The only requirement is, the applica-
tion objects to be indexed inherit from the documentation
object base (DSC_Object). Since DSC_Object is a sys-
tem type, any application type may inherit from this type
just by defining it as base type for the user-defined type.

 Index Services support creating and maintaining index-
es. In addition, ODABA

NG
 provides an ObjectRating

class, which produces search results.

 Index Services allow indexing object instances, i.e. as-
sociating object instances with keywords. Object in-
stances are associated with keywords found in selected
text fields of the object or in text field of related objects.

 Index Services support multilingual indexing, which al-
lows creating indexes for different languages for multilin-
gual text fields. Be fore scanning text fields, the text is
normalized, i.e. HTML text fields are converted into plain
text fields.

Tools For building indexes two tools are provided. The GUI In-
dex Service provides a GUI tool, which supports building
keyword collections and defining lexical base terms. The
same can be achieved with the console Index Services.

GUI Index Ser-
vices

GUI Index Services are provided to build keyword collec-
tions by indexing objects. This requires skills about in-
dexing processes to provide high quality keyword collec-
tions.

Console Index
Services

Console Index Services are mainly used to update key-
word indexes without altering keyword collections. In or-
der to run maintenance processes without user interac-
tion, console applications can be set-up un full automatic
manner.

Word collections Index creation is a rather difficult task, since during index
creation, keyword and stop-word collections must be
created. ODABA

NG
 delivers a keyword and a stop-word

 Page 6 of 26

collection, but usually, those collections depend much on
the subject area.

Keyword collec-
tion

The keyword index contains all words used in object‟s
text fields, which are considered as relevant. Usually,
words like „a‟ or „the‟ would not count as relevant, since
they are expected to appear in most text fields.

Stop-word col-
lection

In order to increase search efficiency, words considered
as irrelevant are stored in a stop-word collection. Key-
word collection and stop-word collection need not to be
distinct. Thus, stop-word may act as keywords tempo-
rarily by switching off the stop-word feature.

Lexical base Different word forms may lead to strange results, since
you might get different results when searching for „prop-
erty‟ or „properties‟. A lexical base is a word, which col-
lects all word forms referring to the same concept or
idea. Creating relationships between keywords and lexi-
cal base terms is a simple mean to improve the quality of
an index.

Keyword ex-
pansion

Expanded keywords are keywords consisting of more
than one word. In the simple case, an object instance
containing the text „New York‟ would map to key words
„new‟ and „york‟. Searching for „New York‟ in this case re-
turns many uninteresting results. We would get much
better results, when accepting „New York‟ as one key
word. Keyword expansion requires adding expanded
keywords to the keyword collection manually.

Built index Building an index means creating the links between
keywords and associated objects. After indexing data-
base objects, each keyword refers to all object instances
associated with that keyword.

Since you may index object instances of many different
types, the object collection for a keyword is a weak-
typed collection and may contain object instances of dif-
ferent types.

Type lists In order to improve comfort and performance for search
requests, associated object instances can be ordered in
type lists, where each list contains the objects for a cer-
tain type, only.

Index creation
with user inter-
action

Index creation with user interaction allows building high
quality keyword and lexical base term collections.
Hence, this technology should be used at the beginning
of an indexing process. Later on, when keyword collec-

 Page 7 of 26

tions have been defined, automatic index creation is
suggested for maintaining the index.

Automatic index
creation

Indexes can be created automatically without any user
interaction: When creating an index automatically, the
indexing process may refer to a pre-defined set of key-
words and stop-words. The indexing process may also
create keywords automatically, in which case the creat-
ed index must be cleaned up later on.

Multilingual sup-
port

Keywords, stop-words and lexical base terms support
different languages. In order to create indexes for differ-
ent languages, word collections can be translated. This
provides an index that refers to object instances inde-
pendent on the language used in the text fields of the
objects.

 In order to create different indexes for each language,
keywords should not be translated but stored separately
for each language. The current language for building an
index is taken from the DSC_Language option, which
can be set in the application or in the application.

Index service ap-
plication

Most of the features required for indexing are provided in
the IndexManager class. This allows writing simple ap-
plications for specific index processed instead of running
the standard index service tools.

Index mainte-
nance

Since text fields in object instances may change, key-
word indexes must be maintained. This could be done in
real time, i.e. when a text in an object had changed. This
might become time consuming, especially when consid-
ering that only a few words had changed in a long text.

 Another way is updating the keyword-object relationship
in a regular maintenance process. Since in this process
many objects have to be checked, but just a few had
changed, the index can be updated by including objects
only, which had changed the last indexing process.

 Page 8 of 26

3 GUI Index Services

 For running the GUI Index Services, you need to prepare
a configuration or ini-file, which contains a minimum of
index information for the indexing process. With that
configuration file you may call the Index Services as:

ODABA/ode90.exe ini-file

Ini-file The ini-file contains the definitions for the data sources,
object collections to be indexed and text fields.

 [SYSTEM]

DICTIONARY=C:\odaba\adk.sys
[ODE90]
RESOURCES=RESSECT
DATA=DATSECT
PROJECT=IndexServices
PROJECT_DLL=Designer
CTXI_DLL=AdkCtxi
DESIGNER_RES=C:\odaba\res
DSC_Language=English

[RESSECT]

DICTIONARY=C:\odaba\adk.sys
DATABASE=C:\odaba\adk.dev
NET=YES
ONLINE_VERSION=YES

[DATSECT]

DICTIONARY=C:\odaba\adk.sys
DATABASE=l:\opa\opa.dev
NET=YES
ONLINE_VERSION=YES
ACCESS_MODE=Write

[IndexManager]

keywords=DSC_Keyword
stopwords=DSC_Stopword
lexterms=DSC_LexTerm

[SYSTEM] The system section refers to database system infor-
mation. The minimum required is the DICTIONARY ref-
erence to the system dictionary, which is stored in the
ODABA

NG
 installation folder. When running the applica-

tion with a system dictionary stored on the server, server
name and a port number have to be defined as well.

 Page 9 of 26

[ODE90] The ODE90 section contains information for the ODA-

BA
NG

 GUI runtime environment. It refers to sections for re-
source database and database locations and contains some
details fir the Index Services application. This section must not
be changed.

[RESSECT] This section defines the connection to the application re-
source database, which is the adk.dev database provid-
ed on the ODABA

NG
 installation folder. This section must

be updated, when ODABA
NG

 had been installed on a dif-
ferent location as the default location or when running
the application in a Unix or Linux environment.

[DATSECT] This data section defines the connection to the applica-
tion database by defining the dictionary and the data-
base. When indexing a resource database (as in the ex-
ample above), the dictionary is the system dictionary
adk.sys provided in the ODABA

NG
 installation folder.

Usually, paths for dictionary and database must be re-
placed by the application database (DATABASE) and
the application resource database (DICTIONARY).

[IndexManager] The Index Manager section defines the collection names
for keyword, stop-word and lexical base term collections.
Usually, one refers to the default collections as in the
example above. Sometimes, it becomes necessary to
define different keyword collections for different indexing
processes. In this case, additional keyword, stop-word
and lexical base term extents must be defined in the ap-
plication resource database before being referenced
here.

Running GUI In-
dex Services

When calling Index services with this type of minimum
configuration, an empty application appears:

 Page 10 of 26

Defining object
collection

You may enter an operation path to the object collection
to be indexed in the collection field.

Defining text
fields

After defining the object collection to be indexes, you
can chose up to 10 text fields or operation paths to text
fields to be evaluated by the indexing process. Text
fields must by valid properties in the context of the object
type for the selected object collection.

 In order to get a list of available text fields, enter * in the
first list line and press the Start button. Then, a list with
the maximum 10 text fields (properties) defined for the
object type will be displayed. You may remove text fields
by using the Remove function from the context menu.
Using the Insert function from the context menu will in-
sert an empty line for entering another text field in the
list.

 For defining additional text fields, you may also enter
text field names or operation paths into empty lines at
the end of the list.

Selecting index
options

Desired options can be switched on in the option list.
The meaning and affect of those options is described in
“Index options”.

1. Enter extent name or operation path
to objects to be indexed.

2. Double click to enter text field name (proper-
ty path) or operation path to text fields to be
included in the indexing process.

3. Chose desired options.

4. Start indexing process.

 Page 11 of 26

Start indexing
process

Finally, you may press the Start button to run the index-
ing process with the current settings.

Predefined set-
tings

In order to simplify running an index service, you may
provide extended Index Services settings in the configu-
ration or ini-file in the [IndexManager] section:

 …

[IndexManager]

keywords=DSC_Keyword
stopwords=DSC_Stopword
lexterms=DSC_LexTerm

collection=NamedTopics.OrderBy(sk_ident)

field1=definition.name
field2=definition.definition.characteristic
field3=sub_topics().definition.name
field4=sub_topics().definition.definition.characteristic
field5=definition.lable
field6=sys_ident

stop_word=YES
remove_keys=NO
type_list=YES

 Note, that option variables are case sensitive and no
spaces are allowed between name and „=‟ sign, when
using an ini-file as in the example above. Spaces can be
inserted when using a configuration file (xml) instead.

collection In the example above, the operation path to the collec-
tion changes the sort order, which helps seeing the pro-
gress.

Text fields The configuration or ini-file allows defining up to 9 text
fields, only, and not 10, as possible in the GUI applica-
tion.

 Field 3 and 4 refer to a collection of subordinated text
fields, which are included into the evaluation as well.

Options All options defined in the GUI tool can be defined in the
configuration or ini-file. Usually, you need to define only
those fields, which are to be enabled. User-defined in-
dex applications, however, may refer to more than one
indexing process. Hence it is more save, always to de-
fine all options in the [IndexManager] section.

Indexing objects After the options have been set properly, you may start
the index processing by pressing the Start button.

 Page 12 of 26

 The Index Manager associates each selected object with
all keywords found in the listed text fields. In the exam-
ple above, this means, that objects (Topics) are also as-
sociated with keywords found in related object instances
(sub_topics), as defined in field 3 and 4.

 Index services will stop, when a word found in the text is
not defined as keyword or as stop-word. The critical
word is highlighted in the text and displayed in the Se-
lected field below the text box.

 Now, you can decide, whether the word found is a key-
word or stop-word.

Create stop-
word

When the word selected has been identified as stop-
word, click the Add Stop-word button. The selected
word will be added to the stop-word collection and not
be questioned any more, supposed the Stop-word op-
tion is switched on.

Create keyword When you decide, that the current word is a keyword, a
lexical base term should be selected from the drop-list
below or entered in the Lex term field. The lexical base
collects all keywords with the same meaning. This al-
lows finding a text which might contain the word „proper-
ties‟ when searching for „property‟.

 Page 13 of 26

 Theoretically, the word used for the lexical base term
does not matter, but practically is helps much using a
sort lexical normalized word form. The Index Manager
tries to locate a lexical base term when detecting a new
word and displays it in the Lex term field.

 When you do not want to create a lexical base term, the
Lex term field must be empty before adding the key-
word.

 For creating a new keyword, you just click on the Add
keyword button.

Ignore word When the current word is neither a keyword nor a stop-
word, you may ignore the word by clicking Ignore word.

Spelling
correction

When the selected word is just misspelled text, you may
correct the highlighted text in the text box above. After
changing the text in the text box, we suggest to press
the Rescan button in order to include the word changed
in the indexing process.

Changing
options

During the indexing process, you may change the op-
tions at any time. Thus, you may switch on the Keyword
option in order to continue indexing based on the key-
word collection defined so far.

Terminate
process

In order to terminate the indexing process, you may
press the Stop button, which allows you starting a new
indexing process. You may also leave the application by
clicking on the close button (x) in the upper right corner
of the application form.

Progress
indicator

In order to get a slight idea about the progress of the in-
dexing process, the key of the currently selected in-
stance is displayed in the Key field above the text field.

N:\v11\doc\documentation\Utilities\IndexServices.doc Page 15 of 26 Last saved: 01.11.2012 14:13

4 Console Index Services

 For running the Console Index Services, you need to
prepare a configuration or ini-file, which contains a all
required information for the indexing process. With that
configuration file you may call the Index Services as:

ODABA/IndexServices.exe ini-file

Ini-file The configuration or ini-file contains the definitions for
the data sources, object collections to be indexed and
text fields.

 [SYSTEM]

DICTIONARY=C:\odaba\adk.sys

[IndexServices]

DICTIONARY=C:\odaba\adk.sys
DATABASE=l:\opa\opa.dev
NET=YES
ONLINE_VERSION=YES
ACCESS_MODE=Write
DSC_Language=English

[IndexManager]

keywords=DSC_Keyword
stopwords=DSC_Stopword
lexterms=DSC_LexTerm

collection=NamedTopics

field1=definition.name
field2=definition.definition.characteristic
field3=sub_topics().definition.name
field4=sub_topics().definition.definition.characteristic
field5=definition.lable
field6=sys_ident

stop_word=YES
remove_keys=YES
type_list=YES
auto_key=YES

[SYSTEM] The system section refers to database system infor-
mation. The minimum required is the DICTIONARY ref-
erence to the system dictionary, which is stored in the
ODABA

NG
 installation folder.

 Page 16 of 26

[IndexServices] This IndexServices section mainly defines the connec-
tion to the application database by defining the diction-
ary and the database. In the example above the diction-
ary is the system dictionary adk.sys provided in the
ODABA

NG
 installation folder, but it might be also an ap-

plication resource database, when going to index object
instances in an application database.

Usually, paths for dictionary and database must be re-
placed by the application database (DATABASE) and
the application resource database (DICTIONARY).

In addition the section defines some application settings
for the Index Services, as e.g. the language
(DSC_Language).

[IndexManager] The Index Manager section defines the collection names
for keyword, stop-word and lexical base term collections.
Usually, one refers to the default collections as in the
example above.

Maintenance op-
tions

In principle, it is possible to run console Index Services
for building indexes and keyword collections as de-
scribed for the GUI Index Services. But the basic idea is
to run cyclic maintenance processes in order to update
the object/keyword associations.

Best matching Typically settings or maintenance applications are the
following options:

 stop_word=YES
remove_keys=YES
type_list=YES
auto_key=YES

 With this configuration, stop-words are checked and
keywords are automatically created, when not yet being
defined as keyword or stopword. Newly created
keywords are not associated with lexical base terms.

 This provides best maching results after maintenance,
but quality is not as good, since different word forms are
not recognized as same.

Best quality Alternativly, maintanace can be called with the following
options:

 Page 17 of 26

 stop_word=YES
remove_keys=YES
type_list=YES
key_word=YES

 In this case, unknown words will be ignored and object
instances are associated with known keywords, only.
This allows calling GUI Index Services later on (e.g.
once a week or once a month) in order to assign new
keywords and lexical base terms manually.

 This maintenance type does not provide good matching
results, since new keywords cannot be searched. After
running the GUI Index Services for creating new key-
words, the quality is better.

Optimal solution The optimal solution would be to run a sort of auto-
matching between new keywords and lexical base
terms. Still, we will need a good tool for maintaining
mismatches and turning keywords into stop-words.

We are working on better solutions and waiting for your
comments.

Running console
Indexing Services

When calling Index Services with a maintenance
configuration as described above, the indexing process
runs without user interaction.

 The options are displayed on the console and the
number of indexed objects and keywords created is
displayed at the end of the session.

 When running console Index Services without key_word
and auto_key option, the process stops at the first
unknown word.

 Page 18 of 26

 The console Index Services let you decide between de-
fining a keyword or a stop-word. You may also ignore
the word currently selected, but you cannot assign a lex-
ical base term to the word.

 This is, however, a simple way to estimate the density of
unknown keywords in the system, which is a measure
for running manual keyword maintenance in order to im-
prove the index quality.

 Page 19 of 26

5 Index Manager Options

 This is a short summery of settings for the Index Man-
ager, which is usually called by the Index Services but
could also be called by user-defined indexing processes.

collection The collection option defines the path to the object in-
stances to be indexed.

collection=NamedTopics

 In simple cases this is an extent name, but is could be a
more complicate operation path, as well.

collection=NamedTopics().sub_topics

 With the last collection definition, all sub-topics could be
indexed as individual object instances. Thus, they be-
come accessible via a keyword index.

 Since objects to be indexed need an object identity
(LOID), the collection path must not refer to transient ob-
ject instances (i.e. in view)

collection=NamedTopics().Select(title = definition.name,

 text = definition.definition.characteristic)

 The example above is not valid, since the select opera-
tor creates transient instances, which cannot be in-
dexed.

 Note, that option definitions in ini-files must not have line
breaks. Using a configuration file might be more com-
fortable, but here „<‟ and „>‟ must be coded as < and
>.

field1…9 Field options provide text fields or properties defined in
the structure of the collection selected by the collection
path.

 Fields may refer simply to text properties in the object
instance:

field1=definition.name

field2=definition.definition.characteristic

 In some cases text properties in subordinated objects
conceptually count as object properties. Thus, field op-
tions may also refer to collections of text fields, by defin-
ing operation paths.

field3=sub_topics().definition.name

field4=sub_topics().definition.definition.characteristic

 Page 20 of 26

 Here, the name and characteristic field from all related
sub-topics are included in the indexing process.

 Field definitions may also define views, since text fields
act as criteria for associating the object instance with a
keyword, only, and are not referenced physically.

Switches Switches or Index Manager options allow controlling dif-
ferent indexing strategies.

stop_word When the stop-word option is switched off, stop-words
will not be checked. In case a stop-word is also stored in
the keyword collection, this allows temporarily assigning
instances to disabled stop-words. After switching on the
stop-word option again, words that are stop-words will
be ignored.

 Setting the stop-word switch on requires the definition of
a stop-word collection for the Index Manager (configura-
tion or ini-file). When no stop-word collection had been
defined, the stop-word switch will be ignored.

key_word When the option is switched on, the indexing process
checks for defined keywords, only. All words not defined
as keywords are ignored. This option is typically
switched on for maintenance processes.

auto_key When auto-key is on, the indexing process will add new
words to the keyword collection without user interaction.
This is a typical maintenance option and provides a fast
way of building indexes (but with low quality).

expand_key The expand-key option is able to handle multiple word
keywords. Thus, it becomes possible to consider „New
York‟ as a single keyword.

 Defining multiple word keywords is not subject of the In-
dex Services. Your application must find an own way of
defining multiple keywords.

 A typical way is using defined concepts, which often
consist of more than one word. When your application
has good concept definitions, those can easily be copied
to the keyword collection (DSC_Concept 
DSC_Keyword).

 Another way is importing multiple word keywords or add-
ing those manually (e.g. in the Thesaurus application or
via OShell).

 Page 21 of 26

remove_keys In order to remove old associations between object in-
stances and keywords, this option should be switched
on.

 Indexing processes are, however, much faster, when
this option is switched off. In this case, old keyword as-
sociations to the object instance are not removed and
the object will still match old keywords.

type_list The type list option must be switched on, when object
type collections are to be created for each keyword. This
will improve search performance and is required, when
you search by type. Thus you may get separate search
results e.g. for Persons and Cars referring to keyword
„blue‟.

 Do never change the option without switching on re-
move_keys, because type lists will be updated only for
keywords associated with an object the first time.

 Page 22 of 26

6 Create application specific Index Services

 Indexing logic becomes rather complex after a while and
instead of running the Index Services 20 times or more,
you may define you application specific index services.

IndexManager
class

Building index services is supported by the In-
dexManager class. Details for IndexManager class fea-
tures are described in the reference documentation for
this class.

 The main targets of the class are

 Support indexing processes

 Support index search

Opening
IndexManager

To call IndexManager functions, the IndexManager must
be opened first. Opening the IndexManager means cre-
ating an IndexManager objects and opening the keyword
collections (keywords, stop-words and lexical base
terms).

 You may pass names for the keyword collections directly
from within the program, but usually, you gain more flex-
ibility, when passing collection names via the configura-
tion or ini-file.

 IndexManager im;

 if (im.Open(db_handle,"Section1")) ERROR

 For opening the index manager, you may pass the name
of a section defined in the configuration or ini-file, which
has been passed to the function.

To prepare the next indexing step, you just need to call
the Open() function once more, passing the section
name for the specifications of the next step.

 if (im.Open(db_handle,"Section2")) ERROR

 Switches are set from the settings in the section of the
configuration file. You may change settings for switches,
since those are public in the IndexManager instance.

Indexing process During the indexing process, the index manager associ-
ates the objects from the object collection with existing
keywords. Depending on the options set in the configu-
ration file or by the program, the index processing stops
at the next unknown keyword.

 Page 23 of 26

 You may call the Run() function to run the default con-
sole processing. Since an indexing process works for a
selected language, it might be necessary ti set-up the
language before running the indexing process.

 Im.SetLanguage(“English”);

 if (im.Run()) ERROR

 Im.SetLanguage(“German”);

 if (im.Run()) ERROR

 If you want to provide your own handling for unknown
keywords, you may write a simple loop as:

 while (im.Next()) {

 if (!(word = im.GetWord())) {

 // processing unknown word

 }

 }

 Processing unknown words you may call AddKeyword()
or AddStopword() in order to create new keywords or
stop-words. Before adding a keyword, you may provide
a lexical base term.

 while (im.Next()) {

 if (!(word = im.GetWord())) {

 …

 if (IsKeyword(word)) // application function)

 im.SetLBTerm(GetLexicalBase(word));

 im.AddKeyword();

 }

 }

 }

 In the example above, IsKeyword() and GetLexical-
Base() are application functions providing algorithms for
detecting keywords and assigning lexical base terms.

Keyword search The Index Manager supports keyword search by
weighting objects relating to a keyword. Opening the in-
dex manager for keyword search requires a keyword
collection, which might me defined in the ini-file or could
be passed directly to the IndexManager constructor.

 IndexManager im(“DSC_Keyword”);

 if (im.Open(db_handle")) ERROR

 Page 24 of 26

 Before calling Search() the application must provide a
property handle, which will contain the result collection
after searching. The result can be stored in a transient or
temporary collection but also in a persistent collection in
order to store the search result (optimizing search).

 PropertyHandle result;

 result.Open(GetDBHandle(),"KWSearchResult",PI_Write);

 Here, the result collection had been defined as tempo-
rary extent in the application resource database.

 After providing a result property handle, Search() can be
called in order to obtain the result collection in the
passed property handle.

 // result and search_string // passed as parameter

 if (Search(db_handle,search_string,&result,NULL,50)<0)

 ERROR

 Search returns the number of objects in the result collec-
tion. This is an estimated count, when the value is
greater than the number of objects in the result collec-
tion. The number of objects in the result collection can
be limited by the maximum count (50 in the example)
passed to Search().

Maximum
number

The number of objects in the result collection can be lim-
ited by the maximum count (50 in the example) passed
to Search(). Limiting the result collection causes the
Search() function to terminate, when the requested
number of objects with the best rating had been found.

 Since this is a rare case, usually Search works until the
end. Thus, passing a maximum limit is rather a memory
than a runtime optimization.

Type search Search() supports searching for objects of a given type.
Objects of different types associated with a keyword can
be stored in type lists. When type lists had been created
in the indexing processing, a type name can be passed
to the search function in order to reduce the result to ob-
ject instances of the passed type.

 // result and search_string // passed as parameter

 if (Search(db_handle,search_string,&result,”DSC_Topic”,50)<0)

 ERROR

 In this example, the search function will return topic ob-
jects (DSC_Topic), only.

 Page 25 of 26

Storing results When searching frequently, it might be a good idea stor-
ing the result collections. Especially, when not using
online re-indexing, the result sets will not change be-
tween two maintenance processes.

 // result // passed as parameter

 NString nsearch(search_string); // passed as parameter

 logical estimated = NO; // returned by search

 int32 count = UNDEF;

 if (LocateKeywords(nsearch)) ERROR

 count = SearchByType(&result,”DSC_Topic”,50,estimated);

 if (count < 0) ERROR

 LocateKeywords() returns a normalized search string,
which allows identifying the search result. Using this
string as key for storing the search result, instead of re-
searching the result can be read directly from the data-
base.

 A timestamp in the search instance helps to keep stored
results up-to-date and allows deciding when to re-
evaluate the result.

Extend key When the keyword index supports extended keywords,
i.e. keywords consisting of more than one word, the ex-
pand_key option must be switched on in order to involve
expanded key words. Expanded keywords will get higher
weight than simple keywords.

 The weight of an expanded keyword corresponds to the
number of words it contains.

 Keyword Weight

 new york city 6

 new york 4

 When a search string contains expanded key words,
Search() looks for expanded keywords with a higher
weight, that for simple keywords. Nevertheless, looking
for „New York City” will result in five keyword entries
used for searching when “new york city” and “new york”
are stored as expanded keywords.

 Search string: new york city traffic

 Keywords Weight

 new york city 6

 new york 4

 new 1

 york 1

 city 1

 traffic 2

 Page 26 of 26

 Simple keywords in a search string will get the weight 2,
while simple keywords extracted from an expanded
keyword will get the weight 1.

Keyword
delimiter

When passing a search string, keywords can be sepa-
rated by any type of delimiter. Normalizing the search
string will convert all delimiters into comma, except
blanks between words in expanded keywords.

 Search string: new york city traffic

 Normalizes string: new york city,traffic

 Commas or other non-blank separators in the search
string may, however, influence the result, since those
are not allowed in expanded keywords.

 Search string: new york, city traffic

 Normalizes string: new york,city,traffic

 In the example above, “new york” is accepted as ex-
panded keyword, only, since “city” had been separated
by comma and does not count as part of an extended
keyword.

